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Abstract- Based on the classical plate theory, a finite composite laminated plate weakened by
multiple elliptical holes is treated as an anisotropic multiple-connected plate, Using the complex
potential method in the plane theory of elasticity of an anisotropic body, a series solution to the
title problem is obtained with the help of the Faber series expansion, the conformal mapping and
the least squares boundary collocation techniques, The effects of the layups, the ellipticity of
holes, the relative distance between holes, total number of holes and their locations on the stress
concentration are studied in detail Some useful conclusions are drawn,

INTRODUCTION

Composite materials, because of their high specific strength and stiffness and their flexible
anisotropic property that can be tailored as per the requirements of applications, have
found a variety of applications in many engineering fields, such as in aerospace, automobile
and chemical engineering, As is known, holes and cutouts are inherent in many engineering
structures, and cause serious stress concentration problems due to geometry discontinuity,
These problems are even more serious in structures made of composite materials, since the
materials exhibit anisotropic and brittle behavior. Therefore, much attention has been paid
by many researchers to the stress concentration problems for composite structures. The
closed form solution to stress concentration around a circular hole in an infinite orthotropic
plate was first obtained by using the complex potential method (Lekhnitskii, 1957; Savin,
1961). Kosmodamianskii and Chemic (1981) obtained the stress states of an infinite plate
weakened by two elliptical holes with parallel axes. Extensive studies have been made by
the authors (Fan and Wu, 1988; Xu 1989, 1992; Yu and Fan, 1991, 1993a,b; Xu et al.,
1992) on the thermoelasticity problems of infinite laminated plates with multiple elliptical
holes. Gerhardt (1984) obtained the solution to a finite plate weakened by a circular hole
using the hybrid finite element method. Similar problems were studied by Ogonowski
(1980), and Lin and Ko (1988) using the boundary collocation approach. These methods,
however, still suffered from some drawbacks, such as large data preparations, long CPU
time and low accuracy. According to the authors knowledge, there are no solutions to stress
concentrations for a finite plate weakened by mUltiple elliptical holes in the literature. Thus,
the objective of this paper is to obtain a solution to the title problem.

Based on the classical plate theory, the finite composite laminated plate with multiple
elliptical holes is simplified as a multiple-connected homogeneous anisotropic plate. The
series solution to the title problem is then obtained by using the complex potential method
in the plane theory of elasticity of an anisotropic body with the help of the conformal
mapping, the Faber series expansion and the least squares boundary collocation techniques.
Furthermore, the effects of various parameters are discussed in detail, such as the relative
distance between holes, the total number of holes, the locations of holes, and various
loading conditions. Numerical results indicate that the present method yields accurate
solutions, needs less CPU time and fewer data preparations over the existing methods, and
is convenient to investigate effects of various parameters.
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BASIC EQUAnONS

In the classical theory, the laminated composite plate is treated as an anisotropic plate.
Therefore, the constitutive equation for a laminated plate in plane stress (Jones, 1975) is

G, all al2

""]\"')G" a l 2 a22 Q 26 (jr, (1)

Y,II' al6 a26 a66 ax\,

where {a} is the average in-plane stress and ail are the equivalent compliance coefficients
depending on the fiber orientation and stacking sequence and on the property of each
lamina.

In a rectangular coordinate system Xi (i = 1,2,3), let U;, (Jij and Gu be the displacement,
stress and strain, respectively. Suppose no body force exists, the basic equations of theory
of an elastic body are

(JI! = EiiklGkl

(Ji/.I = 0, (2)

where EUkl is elasticity coefficient, u" (JII and Gil are independent of the X3 coordinate in the
plane problem of elasticity theory. By introducing the Airy stress function, the solutions of
eqn (2) can be expressed as (Lekhnitskii, 1957)

2

(J, = 2 Re L fJ.} ((Jj(z;)
I~ I

2

(J, = 2 Re L ((Jj(z;)
j~ I

2

r IT = - 2 Re I fJ.j((J(Z;)
i~ I

,
U = 2Re L PI((Jj(Z;)-WY+UO

I~ 1

,
v = 2Re L qj((J;(z;)+wx+vo,

j~ I

(3)

(4)

where ((Jj(z;) is an analytic function in the generalized region Si by the affine transformation
ZI = X + fJ.IY from the physical region S, and zi = x + fJ.jY ; fl.j is the root of the characteristic
equation [eqn (5)], a complex parameter representing the anisotropic extent of a laminated
plate:

(5)

where

(6)

When the forces X n and Yll are prescribed on the boundary, the boundary conditions
are of the form
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2 r'
2 Rei~1 (fJj(z) = + Jo Yn ds+ C1
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(7)

The upper signs on the right-hand side of eqn (7) are taken for the outer contour, and
the lower signs for the inner contour, i.e. for the contour of a cutout.

When the displacements u, v are prescribed on the boundary, the boundary conditions
are of the form

2

2 Re L: Pj(fJj(z) = u+wy-uo
j= 1

,

2Re L: qj(fJJz) = l'-WX-l'o·
1= I

(8)

ANALYSIS

Consider a finite composite laminated plate weakened by multiple elliptical holes with
contours Lo, L

"
L 2 , ••• , L" as shown in Fig. 1. Their semi-major, semi-minor axes and

centers are am, b,ll' and Zm (m = 1,2, .. . /), respectively. By affine transformation Zj = X+ IljY
from the region S onto the region S" the point Zm in the region S corresponds to the point
Zjm in the region Sj'

Let the principal vector of forces acting on the contour of every hole be equal to zero;
the complex potential function (fJ/(Zj) can be expressed as (Xu, 1992)

J.

(fJ(z) = (fJoJz) + L b,k Pk (z), (j = 1,2),
k~O

(9)

where (fJOj(z) is a holomorphic function in the infinite region with 1elliptical holes. Pk(z) is
the Faber polynomial of the region limited by contour L /o .

The mapping function is given as follows:

where

(

V tJlII )
Zj - Zjm == RJm C;jm + z-..

_/11/

(m = 1,2, .. . 1, j = 1,2), (10)

Fig. I. The finite composite laminated plate weakened by multiple elliptical holes.
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This mapping function transforms the exterior of hole m in the complex plane zi into the
exterior of a unit circle, ~,m = exp(i8), in complex plane ~im' If the major and minor axes
are not parallel to the coordinate axes, the rotation mapping should be resorted to.

Using Laurent series expansion and the Faber polynomial in the general region, the
complex potential function can be shown as (Xu, 1989)

I / b /
'\ '\ I:'" + '\ '((J,(:::,) = 1..- 1..-.

n
L. ai,z,.

iii = I k - I S,m k = 0

(II)

Obviously, the complex potential function eqn (II) is analytic in the region Si' Once
the unknown coefficients b,m, and ai' are determined by using the boundary conditions, the
stress and displacement field can be obtained uniquely.

Suppose the external forces X". Y" are applied or the displacements uU), vet) are given
on the contour. the boundary conditions eqns (7) and (8) can be expressed as

where

,

L [r,({Ji(:::J+Si({Jj(:::i)] =f(t),
,~ I

1'/ = I +iILJ , .\/ = I +ipi

f(t) = ±f'i(X,,+iY,,)ds+cl +icz,
(I

(12)

when the surface forces are given. The upper and lower signs correspond to the outer and
inner contours. and

ri = pi+iql' .l"i = Pi+iqi

IU) = u(t) + iv(t) - i(rl) + wx) - (uo - wy),

if the displacements are prescribed on the boundary.
The right hand side of eqn (12) can be expanded into the complex Fourier series, a

power series of (J = exp(i8).
From the mapping function, eqn (10), it can be seen that function ~JI"(z) is holomorphic

in the complex plane:::, weakened by the hole m. Therefore, function ~;;':J(zJ is holomorphic
in the interior of the p-th (p =f- 111) hole and continuous to its boundary. Thus they can be
expanded into a Faber series

Similarly,

/

SIll:) L A~;:kPkp(ZJ.
,~ 0

Y.

:::'; = L H;,JPkl'(:::')'
, ~ I)

(13)

(14)
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where Pkp(z) is the k-th Faber polynomial for the ellipse LJp of the complex Zj plane and

POI' = 1, (15)

where the coefficients A~:L H~.k in the Faber series can be determined by the Fourier
expansion method (Xu, 1992). Substituting eqns (13) and (14) into the complex potential
expression, eqn (11), and using ~jp = exp(i8) = (J in the contour L jp of the p-th hole, the
boundary values of cp/Zj) (j = 1,2) are obtained in a power series of (J.

It is easy to prove (Xu, 1992) that the point Z = Zm + am cos 8+ ibm sin 8 on the physical
region is transformed into the point (J = exp(i8) on the ~jm plane by using the affine
transformation z/ = x+ IljY and the mapping transformation, eqn (10). Taking the values
of cp/z) a partial sum up to the N-th power term and substituting them into the boundary
condition of every elliptical hole, and equating the coefficients of the same power (Jk
(k = 0, ± 1, ± 2, ... ,±N) on both sides of every equation, we obtain the (2N+ 1)1 linear
equations about the coefficients bjmb ajk and Cp (p = 1,2, ... , I), but these linear equations
obtained from inner boundary conditions are not enough to determine all coefficients.
Therefore, it is necessary to use outer boundary conditions. Although for smooth outer
contour L o of the plate the accurate solution can be obtained using the Faber polynomial
in the general region, the calculation is lengthy, complicated and untidy. A more convenient
method, the least square boundary collocation technique, is used in this paper. Taking
collocation points Zek (k = 1,2, ... , M, M ): 2N +4) along the outer contour Lo and sub­
stituting Zek into the boundary condition eqn (12), we can obtain the linear equations about
the unknown coefficients bjmk and ajk that satisfy the outer boundary conditions. These
equations together with (2N + 1)/ equations that satisfy inner boundary conditions are used
to determine the complex potential function CPj(z), and the stress field and displacement
field in the laminated plate can be obtained by eqns (3) and (4).

Obviously, the complex potential function cplZj) is an analytic function in the region
Sj' Therefore, the accuracy of the solution can be judged according to whether the boundary
conditions are satisfied fully. In the present method, the inner boundary conditions can be
satisfied accurately (absolute error less than 10- 5

). By increasing the number of collocation
points, the outer boundary conditions can be better satisfied to ensure the relative error
within one percent. As we know from the Saint-Venant principle, more accurate results
(see Tables 1 and 2 for details) of the stress distribution around holes are obtained by using
the present method.

NUMERICAL RESULTS

Consider a plywood plate in which the direction of the x-axis coincides with the
maximum Young's modulus (Lekhnitskii, 1957) weakened by two circular holes with

Table I. The stress (5" around hole 2 contour of the plywood plate with two holes subjected to (5, = 1.0 by taking
32 collocation points on the outer boundary and the partial sum N

0 N= I N=3 N = 5 N=7 N= 9 N= 12 N= 15 Lekhnitskii (1957)
._----_.

0 -0.705 -0.706 -0.707 -0.707 ~0.707 -0.707 -0.707 -0.71
15 -0.339 -0.339 -0.340 -0.340 -0.340 -0.340 -0.340 -0.34
30 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.07
45 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.40
60 0.962 0.962 0.963 0.963 0.963 0.963 0.963 0.96
75 2.567 2.568 2.569 2.569 2.569 2.569 2.569 2.57
90 5.450 5.452 5.454 5.454 5.455 5.455 5.455 5.45
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Table 2. The stress a(l around hole 2 contour of the plywood plate with two holes subjected to
a, = 1.0 by taking the partial sum N = 3 and M = 4m collocation points on the outer boundary

(J m = 3 m=5 m = 7 m = 9 m= II Lekhnitskii (1957)

0 -0.70590 -0.70604 -0.70603 ~0.70601 -0.70603 ~0.71

15 -0.33919 -0.33929 -0.33927 -0.33926 -0.33927 -0.34
30 0.06904 0.06899 0.06900 0.06900 0.06900 0.07
45 0.40311 0.40308 0.40308 0.40309 0.40309 0.40
60 0.96244 0.96243 0.96244 0.96244 0.96244 0.96
75 2.56782 2.56783 2.56784 2.56784 2.56785 2.57
90 5.45174 5.45180 5.45181 5.45181 5.45185 5.45

diameter D, as shown in Fig. 2a. The material properties are

E 1 = 11.8GPa E 2 = 5.89GPa V l 2 = 0.071 G I2 = 0.687 GPa.

Assuming that the relative center-to-center distance and the relative plate size are large
enough (IID = 40; elD = tiD = 40), the numerical results for the finite plate with two holes

(a) (b)

Fig. 2. The finite laminated plate weakened by two circular holes.

(a) (b)

e

(c)

Fig. 3. The finite laminated plate weakened by three circular holes.

(a) (b)

Fig. 4. The finite laminated plate weakened by four circular holes.
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Fig. 5. The effect of the relative center-to-center distance on the stress concentration.
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Fig. 6. The stress distribution around the hole with maximum stress of laminated plate weakened
by multiple holes in series.
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would be approximately equivalent to ones for the infinite plate with a single hole, which
were calculated by Lekhnitskii (1957). The results by the present method by taking the
partial sum N and AI = 4111 collocation points on the outer boundary are compared with
Lekhnitskii's results in Tables I and 2, where III is the number of collocation points
uniformly distributed on each side. It is shown that the present solution has the features of
fast convergence and high accuracy.

The numerical examples presented in this paper have focused on the stress con­
centration of composite laminated plates with multiple holes. The effects of many par­
ameters such as the size of laminated plate, the layups and the hole eccentricity, etc., on the
stress concentration of a plate with a single hole have been discussed elsewhere by the
present author (Xu, 1992). Those effects are the same for a plate weakened by multiple
elliptical holes. In the following calculation, the partial sum N and the number ofcollocation
points on the outer boundary are taken to be 10 and 32, respectively. Numerical results
indicate that the accuracy to satisfy boundary conditions has exceeded the requirement
mentioned previously.

Consider a finite laminate plate (0 4 / ±45j, weakened by multiple circular holes with
diameter D, as shown in Figs 2-4. The laminated plate is composed of T300/5222. The
material properties are

£1 = 126.2GPa £" = 7.3GPa \'1" = 0.247 G 11 = 4.5GPa.

Assume that these plate are, respectively. subjected to (J" (J, and Tn along the outer
boundary. The stress concentration factor is SCF = (J,,!(J, and the minimum distance from
the center of the hole to two sides of the plate is (' = 3D, r = 3D, respectively.

Figure 5(a-e) shows the stress (JI! distribution around hole I of the plate with two
circular holes shown in Fig. 2(a). The stress distribution around hole 2 can be obtained by
means of the reflection principle. The effect of the relative center-to-center distance liD on
the stress concentration is easily seen. When the relative center-to-center distance liD
becomes smaller, the stress concentration decreases rapidly for the plate under the (J,

loading, and conversely the stress concentration increases rapidly for the plate acted by (J,

and T". When IID ~ 4.5, the effect of the relative center-to-center distance on the stress
distribution becomes very small, and the plate with multiple holes can be treated as with a
single hole in engineering analysis. It should be pointed out that differential loads acting
on the plate cause different effects of the relative distance I! D on the stress concentration,
because the sudden change of stiffness caused by geometric discontinuity by a series of
holes becomes less evident. Thus. it is beneficial for the reduction of the stress concentration.

Figure 6(a-c) shows the stress distribution around the hole with maximum stress in
the laminated plate containing multiple holes in series (Figs 2a, 3a and 4a) under loads of

------_._--------,

-2 "

:r
-8 '-_-1....__'--_-1....__'--__-'--__'-_-1...._----'

o 45 9C 135 180 225 270 315 360

e (deg.)

Fig. 7. The stress (J" pattern around hole I for the plate with two holes shown in Fig. 2(b).
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three holes shown in Fig. 3.
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(J" 0", and Tn' respectively. The results indicate that when 0", is applied, the increase of
number of holes decreases stress concentration for the series of holes arrangement, and
when (J, or Tn is applied on the plate, the increase of number of holes causes a more severe
stress concentration. The reason for this phenomenon is the same as that for a plate under
different loads. Owing to the interaction among holes, the maximum stress concentration
is produced in two side holes and the middle hole, when 0", (or Tn) and (Jy are applied in
the plate, respectively.

The following discussion focuses on the effect of the hole position changes on the stress
concentration. Figure 7 describes the stress 0"0 pattern around hole I for the plate with two
holes subjected to O"n 0", and Tn. respectively (Fig. 2b). Compared with the solution (Fig.
5) of the plate with two holes shown in Fig. 2(a), the stress concentration of holes shown
in Fig. 2(b) is more severe when 0", and Tn is applied, but decreases stress concentration for
case Fig. 2(b) when (J, is applied. Figure 8(a--{;) presents, respectively, the stress distributions
around the hole with maximum stress for the plate weakened by three holes, as shown in
Fig. 3(a--e). The numerical results show that the stress concentration is the most severe for
case (b), and that the plate shown in Fig. 3(a) has the least stress concentration around
holes when 0", is applied. Under loading O"n the most severe case is case (c) and case (a) has
the least stress concentration. When Tn is applied, the most severe case is (b) and case (c)
has the smallest stress concentration. Figure 9(a and b) shows the stress around the hole
with maximum stress for the plate containing four holes as shown in Fig. 4(a and b). Cases
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Fig. 9. The stress er" pattern around the hole with maximum stress of laminated plate weakened by
four holes shown in Fig. 4.
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(b), (a) and (c) have the most severe stress concentrations under loading of (J" (J, or LXI'

respectively. From the above discussion, one can conclude that placing holes to cause
smooth changes of stiffness along the loading direction is beneficial for the decrease of the
stress concentration. All results indicate that when the plate is subjected to shear stress, the
stress concentration is the most serious, the same as in the case of isotropic plates.

Figure 10 shows the stress distributions around the hole 1 of the laminated plate
(OJ ± 45/;/90), with two holes (Fig. 2a). The results show that the stress concentration
strongly depends on the percentage of each layup in the whole plate. The more anisotropic
the plate, the more severe the stress concentration. The increase in the number of ±45"
laminae causes a decrease in stress concentration because it reduces the extent of the
anisotropy of laminates.

Figure 11 show the stress concentrations around the hole I of the laminated plate
(041±45L weakened by two elliptical holes (Fig. 12). In general, the increase of the ellipticity
causes more severe stress concentrations. It is interesting, however, that when alb> 1.0,
the stress concentration becomes even smaller than that of a circular hole (alb = 1.0) in the
plate subjected to (JX' For a specific laminated plate subjected to a specific load, there exists
a hole of specific ellipticity which causes the smallest stress concentration; in general, it is
not a circular hole. The value of aib strongly depends on the anisotropic behavior of the
plate and its loading conditions.
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Fig. 10. The effect of the layups of laminates on the stress concentration.
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Fig. 12. The finite laminated plate weakened by two elliptical holes.

CONCLUSIONS

Based on the results reported in this paper, the following conclusions may be drawn.
(i) The effect of the relative center-to-center distance, 1/D, on the stress concentration is
obvious. In general, the shorter the relative distance, the larger the stress concentration,
but when the direction of the series of holes is the same as that of the applied force, the
phenomenon is opposite. (ii) The increase of number of holes along the direction of applied
force is beneficial for the decrease of the stress concentration, but in all other cases, the
increase of number of holes causes more severe stress concentration. (iii) The effect of the
arrangement of holes on the stress concentration is obvious. The arrangement which causes
the smooth stiffness changes along the direction of acting force is beneficial to the decrease
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of the stress concentration. (iv) The stress concentration strongly depends on the layups of
laminates. The increase of the number of ±45" laminae is beneficial to the decrease of
stress concentration because it reduces the extent of the anisotropy of laminates. (v) In
general, with the increase of ellipticity, the stress concentration becomes more serious.
However, for a specific laminated plate under a specific loading there exists a hole ofspecific
ellipticity which causes the smallest stress concentration, and in general, it is not a circular
hole.

REFERENCES

Fan, W. X. and Wu, J. G. (1988). Stress concentration of a laminate weakened by multiple holes. Compos.
Structure 10, 303-319.

Gerhardt (1984). A hybrid/finite element approach for stress analysis of notched anisotropic materials. ASME J.
Appl. Mech. 51, 804-809.

Jones, R. M. (1975). Mechanics 0/ Composite Materials. Scripta Book Co.
Kosmodaminaskii. A. S. and Chemic. U. I. (1981). Stress state of a plate weakened by two elliptical holes with

parallel axes. Sm'iet Appl. Mech. 17,576-581.
Lekhnitskii, S. G. (1957). Anisotropic Plate. 2nd Edn. Gostekizdatr, Moscow (in Russian).
Lin, C. C. and Ko, C. C. (1988). Stress and strength analysis of finite composite laminate with elliptical hole. J.

Compos. Mater. 22, 373-385.
Ogonowski. J. M. (1980). Analytical study of finite geometry plate with stress concentration. AIAAjASMEj

ASCE/AHS, 21st SDM Conference, pp. 694-698.
Savin, G. N. (1961). Stress Distribution Around Hole (English translation edition). Pergamon Press, Oxford.
Xu, X. W. (1989). Some problems in multiple holes joints of composite laminates. Master Thesis, Nanjing

Aeronautical Institute (in Chinese).
Xu, X. W. and Fan. W. X. (199\). Stress in an orthotropic laminate with elastic pins having different fitting.

ASCE J. Engng Mech. 117, 1382-1420.
Xu, X. W.. Sun. L. X. and Fan, X. Q. (1992). Analysis of composite laminate with multiple interference fitting

load-pins. J. Nanjing Aeronaut. Ins!. 24, 64(}-644 (in Chinese).
Xu, X. W. (1992). The strength analysis of mechanically multi-fastened composite laminate joints. Ph.D. Disser­

tation, Nanjing Aeronautical Institute (in Chinese).
Xu, X. W. and Fan. W. X. (1993a). Thermostress concentration of an orthotropic plate weakened by mUltiple

elliptical holes. Acta Mech. Salida Sinica 6, 145-163.
Xu. X. W. and Fan, W. X. (1993b). Thermostress concentration of an anistropic plate containing two elliptical

holes. Acta Aeronaut. Astronaut. Sinic'a 14, 348-354.


